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The effect of chaos in dynamical tunneling that induces a transition among tori in a near integrable
system is investigated. Even though a system energy is moderately low enough for a quasiseparatrix to
be sufficiently thin, in other words, even if most of the phase space is filled with invariant tori, tunneling
paths that connect the tori can be strongly chaotic. A direct consequence of the chaos is manifested as a
mixing property of the tunneling paths, which in turn brings about a statistical redistribution of classical
trajectories after the tunneling, that is, the probability for a trajectory to be found on a given torus after
the tunneling is nearly proportional to the corresponding area on the Poincaré surface of section. This is
highly analogous to the principle of equipartition in statistical mechanics.
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I. INTRODUCTION

The tunnel effect is one of the most important quantum
effects in many fields of science and technology and has
been explored in various aspects [1,2]. However, for mul-
tidimensional heavy particle systems in which the
straightforward application of quantum mechanics is
quite difficult, with the reactive and vibrational dynamics
of molecules being the typical examples, the study of tun-
neling should be even more difficult. There are two types
of tunnelings in multidimensional systems. One is poten-
tial tunneling, which is energetically forbidden motion,
and the other is dynamical tunneling [3], that is, energeti-
cally allowed but mechanically forbidden. In chemical
reaction dynamics [4], for instance, the potential tunnel-
ing has been considered in the low temperature regime
where the reaction can occur only through the tunnel
effect. A typical example of dynamical tunneling is found
in a weakly chaotic system, in which several stable re-
gions composed of invariant tori are surrounded by the
quasiseparatrix in phase space [S5]. Each stable region
represents an individual mode of motion such as a vibra-
tional mode [6]. A path of the dynamical tunneling can
connect two or more tori and induce the mixing of the
modes.

The quantum mechanical wave functions tend to be os-
cillatory for heavy masses, and hence bear a more classi-
cal nature. Thus multidimensional semiclassical mechan-
ics is highly demanded [7-10]. Another important
consequence of the semiclassical limit is that the density
of states becomes enormous in general, which in turn
brings about statistical or chaotic nature to dynamics.
The tunnel effect must often be considered in the context
of chaotic semiclassical dynamics. The interplay be-
tween tunneling and chaos is therefore a quite important
subject, and in the present paper we show that chaotic
dynamical tunneling can give rise to a statistical redistri-
bution of classical trajectories among invariant tori.

The general importance of the interplay between tun-
neling and chaos can be inferred through the following
consideration. Suppose that we are calculating a parti-
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tion function using the path integrals in which the imagi-
nary time of the inverse of temperature is adopted in the
trace operation of the quantum mechanical evolution
operator [7]. On applying the stationary approximation,
a set of canonical equations of motion can be obtained, in
which the ordinary Hamiltonian is replaced by the classi-
cal Lagrangian. That is, the original potential function
should be inverted, on which “classical trajectories” are
to be run. But this process is essentially the same as that
for generating the so-called instanton path [7,11], which
is quite well known as a typical tunneling path. On the
other hand, chaos is conceived as a dynamical origin of
statistical mechanics. Then the partition function should
depend both qualitatively and quantitatively on whether
the instanton paths are chaotic or not. An interesting
case is that even if the ordinary classical trajectories are
nonchaotic, the corresponding tunneling paths of the
same energy can be chaotic. It is this kind of problem
that we address in the present paper.

Tunneling in semiclassical mechanics has been investi-
gated before in conjunction with chaos by several au-
thors. Shudo and Ikeda have shown using the complex
trajectory method [12] that chaos induces a tree-
structured sequence of bifurcation in the tunneling paths.
Tomsovic and Ullmo [13] have shown that chaos can
cause a tunneling between two quasimodes that are locat-
ed on quantized tori. When chaotic wave functions,
which can be formed along a quasiseparatrix, interact
with these quasimodes, a tunneling between the quasi-
modes is induced and thereby leads to erratic energy lev-
els. These observations are of fundamental importance in
the theories of both chaos and tunneling.

As for the semiclassical theory for multidimensional
tunneling, only a few have been proposed [1,2]. A beauti-
ful example is the path-decomposition method in the
path integral approach, in which the instanton paths
arise naturally [11]. In the present paper, we consider the
dynamical tunneling within the framework of the
Hamilton-Jacobi (HJ) equation. The usual tactic in semi-
classical theory to cope with tunneling is to make an ana-
lytic continuation of the HIJ equation into complex-
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valued configuration space, whereby generating imagi-
nary solutions. This is an extremely difficult procedure
except in a one-dimensional case [14]. It is Huang et al.
[1] who have shown using the method of the Huygens
principle that the complex WKB solutions can be pro-
pagated globally in real-valued configuration space. Ta-
kada and Nakamura [2] have numerically materialized
this idea with a theoretical .progress in the connection
problem of the WKB solutions. Very recently, on the
other hand, the present authors have shown that the
time-independent HJ equation, as well as the time-
dependent HJ equation [15], can have a novel class of
nonclassical local solutions, that is, complex-valued (not
necessarily pure imaginary) local solutions along real-
valued non-Newtonian paths [16], which will be briefly
reviewed in the next section. These nonclassical solutions
can be significant only in the context of quantum (and
semiclassical) mechanics. Both the Newtonian (classical)
trajectories and instanton paths are regarded as special
cases of such general solutions. Tunneling is viewed as a
transition from one of Newtonian trajectories to a non-
classical path, and coming back after some short stay in
the nonclassical phase space.

The purpose of the present paper is to investigate the
behavior of the nonclassical (tunneling) paths in a weakly
chaotic system. In particular, we concentrate on the
consequence of chaos to the dynamical-tunneling paths.
More specifically, transitions among tori through tunnel-
ing will be extensively investigated using the Hénon-
Heiles system, which has six distinctive stable regions
separated by two quasiseparatrices in phase space. We
have observed a statistical redistribution of the trajec-
J

tories from a torus to tori through chaotic dynamical
tunneling.

The present paper is organized as follows. Section II is
devoted to a brief review of our tunneling theory. In Sec.
III, we show how the paths of the dynamical tunneling
look and verify how chaotic they are in terms of the
Liapunov exponent. Then, a mixing property due to tun-
neling is presented.

II. THEORY OF TUNNELING [16]

The first order approximation in any semiclassical
theory begins with the Hamilton-Jacobi equation

[4,7-10]. For instance, the WKB theory [7-9,14] de-
scribes a wave function in the form
$(g)=Cexp | W |, (1)

where W is an action integral as a solution of the HJ
equation and C is a normalization factor.

We systematically construct complex-valued action in-
tegrals in real-valued configuration space by introducing
a quantity called ““parity of motion” into the HJ equation
such that
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where

+1 if the motion is classically allowed in the direction k

o=

It is obvious why o is called parity. We use the so-
called mass-weighted coordinate throughout the paper,
and hence the masses do not appear explicitly in the for-
malism. In analogy to the standard relation between the
classical Lagrangian L and W [17],

oL
W, 3
aqk aqk
we define a Lagrangian L as
d9x _ 1 3L
Gp=— =, 4
T do o aq,

where a real-valued parameter 6 mimics the role of the
local time.

One should distinguish L from L  when the Newtoni-
an mechanics is extended, since the nonclassical motions
can arise in terms of L rather than L. Each coordinate
has its own chronological parameter in such a way that

= . (5)

T, =
k /——o_k

—1 if the motion is classically forbidden in the direction k .

r
The corresponding momentum is accordingly defined by

_4q
= k—l/_Pk =Vorde) ©6)

where the quasimomentum p; is kept real even in the
nonclassical region, while p; is pure imaginary for the
negative parity.

Applying the Euler-Lagrange variational principle, one
obtains the following equation analogous to that of
Lagrange:

d

4 |8L
do

9G

_ oL

=0. (7)
dgy

With the help of the above equations, one can take the to-
tal derivative of the Lagrangian as

— 3 0kPrdx | = X 0k (Prdqr —4xdPy)
K x

=—dH({c}), (8)
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from which a new Hamiltonian H({o}) can be extracted
in the usual manner as
=5 Tk _2
H({O})—szk-FV(q). )
k

Equation (8) leads to the modified canonical equations of
motion,

0H({o})

9Py

O0H({o})
apy .

The law of energy conservation still holds for the non-
classical paths, since we have

dH({d}) _,
=0. (11)
do
The above equalities hold for any given set of parities
{01,0,,...}. The entire solutions generated in a given
set of parities constitute a sheet. Thus the whole space of
all the possible solutions is classified in terms of these
sheets. For example, if the parities are all positive, the
modified canonical equations of motion (10) turn back to
the Newtonian mechanics. On all the other sheets non-
classical solutions are generated. For instance, when all
the parities are negative unity, a sheet consisting of the
instanton paths [7,11] is produced. In this way, the local
solutions of the HJ equation are generated on each sheet,
while the global solutions of the HJ equation are to be
constructed by connecting these local solutions smoothly.
We thus identify a nonclassical solution of the HJ equa-
tion having some negative parities as a tunneling path.
A direct analogy from the Newtonian mechanics sug-
gests that it is natural to define an action integral as

Wa=3 fakﬁkqu ,
x

Ordr=

o= (10)

(12)

which we call the path action. W, satisfies the principle
of least action just as in the Newtonian mechanics, and
thereby is responsible for generating both classical and
nonclassical paths. However, the path action does not
satisfy the HJ equation, unless all the parities happen to
be positive as in the Newtonian mechanics.
Fortunately, the solution of the HJ equation can be

readily constructed as

WHJ= % Vo, fﬁkqu 5 (13)
which is called the HJ action. That this action is indeed
a solution can be easily proved by rewriting the HJ equa-
tion as

Ok _2

2——2——pk+V(q)=E . (14)

k
Thus a systematic class of solutions of the WKB theory
has been constructed in real-valued configuration space
with a given set of parities. Wy; on the difference sheets
are to be connected smoothly to form a global solution to

the HJ equation. Note that Wy; is complex valued for
the tunneling paths, and accordingly we write Wy as

Wiy =W +iW, . (15)
Insertion of this expression into Eq. (1) leads to
#(qg)=C exp _le, exp —’;—WR (16)

The first exponential term represents the diminishing
norm of the wave function during the tunneling. Accord-
ingly, the survival probability of a wave function becomes
smaller as the number of negative parities increases. It is
therefore expected in multidimensional systems that tun-
neling paths having only one negative parity will dom-
inate the tunnel effect in general. We consider only such
a case in what follows. For the same reason, the nonclas-
sical solutions or the tunnel effect are never physically
recognized in the classical limit #—0, since the norm of
any wave function of this kind is reduced to zero.

The property with respect to the parity of motion
holds also for the time-dependent HJ equation [15], and
hence the results in what follows are not confined to the
stationary state problem.

To connect the local solutions thus obtained on the
different sheets smoothly with the energy conserved, we
change the sign of one of the parities at a caustic in the
direction normal to the caustic line. The caustics, at
which the density of the paths becomes very high (actual-
ly infinite in the primitive semiclassical approximation),
are defined with the so-called Jacobi field [7] in such a
way that

%
%

det =0, (17)

where p; is a real-valued (quasi-)momentum vector for a
given parity set {o; ==1} [cf. Eq. (6)] at the initial point
on each sheet and ¢ is the final point of a trajectory on
the same sheet. The tunneling path can return to the
Newtonian sheet with a similar procedure when it en-
counters a caustic point on the tunneling sheet.

III. STATISTICAL REDISTRIBUTION
OF TUNNELING PATHS

We now apply the theory described above to the
Hénon-Heiles system [18] to see the effect of chaos on the
dynamical tunneling. The Hamiltonian is

1 1 o, 1 2, 2y, 2 13
—prt+—(x*+y°)+ -=y°, 18
2m. 2myp” 2(Jc y)+xy 37 (18)

H= pf +
where the masses are chosen as m, =1.0087 and m,=1.0
so as to break the symmetry of C, [6,16]. Those trajec-
tories with energy less than 1 are bound in the basin area
around the origin x =y =0. As seen in the contour plot
of the potential of Fig. 1, it has no potential barrier in the
angular direction around the origin. Nonetheless there
present basically six patterns of trajectories in the
configuration space, as shown in Fig. 2, which seem to be
classified in terms of the angular velocity around the ori-
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FIG. 1. Contour plot of the Hénon-Heiles potential function.
There is no potential barrier in the angular direction.

gin. All these trajectories have the same energy E =0.09
but different initial conditions. Although the rotational
mode, pattern II in Fig. 2, has two directions, namely,
clockwise (labeled as ITIA) and counterclockwise (IIB), we
do not distinguish them in the following consideration of
the dynamics. The trajectories of pattern III have arisen
due to the aforementioned introduction of the asymmetri-
cal mass balance. This pattern is supposed to be merged
with patterns IV and V as the mass balance approaches
m,=m,. The Poincaré surface of section corresponding
to Fig. 2 is shown in Fig. 3. Common labels have been
assigned to Figs. 2 and 3 to identify the modes. The sec-
tion has been made at x =0 and p, >0. As seen in Fig. 3,
there are two quasiseparatrices surrounding the six stable

regions. A trajectory in these thin separatrices wanders
around the edges of the tori in an unpredictable manner
[6]. These chaotic trajectories are labeled as VI. We are
going to study the tunneling among these stable regions
and quasiseparatrices for the energy E =0.09.

A. Dynamical tunneling of a single trajectory

We first describe how the tunneling of a single trajecto-
ry looks before the ensemble of the paths are studied.
Any classical trajectory in Fig. 2 has very many caustics
along it, from each point of which the tunneling can be
initiated. For instance, a trajectory of type II (rotation)
has about 42 caustics during a single period of this large
scale rotational motion. This is in marked contrast to a
collision event such as chemical reaction, in which one
expects only a few caustics that can be relevant to tunnel-
ing during a single encounter. An example of the spatial
distribution of the caustics in the Hénon-Heiles system
has been represented in Ref. [16]. Thus it turns out that
one can sample many caustics using a single classical tra-
jectory.

Once a caustic point is encountered by monitoring the
condition Eq. (17), the direction normal to the caustic
line is identified. Then the Cartesian coordinates are or-
thogonally rotated so that one of the new directions coin-
cides with the caustic line. The parity in the direction
normal to the caustic line is changed to —1. The equa-
tions of motion (10) begin to be integrated on this sheet
with the initial momentum being taken to be the same as
that of the connection point. It is obvious that the
momentum normal to the caustic line is zero and thus the
tunneling path is smoothly connected with the classical
path at the transition point.

Reflecting the functional form of the Hénon-Heiles po-

0.4 |
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FIG. 2. Six distinctive pat-
terns of trajectories. All the tra-
jectories have the same energy
E=0.09.
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FIG. 3. The quasiseparatrix on the Poincaré surface of sec-
tion at x =0 and p, >0. The stable regions are separated by the
thin quasiseparatrices. The stable regions are labeled according
to the pattern in the configuration space of Fig. 2. The black
rectangular boxes located in the regions are the area from which
the sampling trajectories are picked up to check the mixing
property. See Sec. IIT and Table III.

tential, there are two kinds of tunneling paths. One is
that escaping out of the basin area far away. The other
remains in the basin until it encounters the first caustic in
the tunneling phase space, which thereby gives rise to a
dynamical tunneling. Obviously, the former is not
relevant to the present study, and only the second type is
considered. This type of caustics is observed a little more
than 10% out of all the caustics, depending weakly on an
individual classical trajectory. As a tunneling path stays
on its sheet longer, the survival probability becomes ex-
ponentially smaller, and therefore we basically pick only
the first encountered caustic in the tunneling phase space.
Again, the coordinates are rotated so that one of them
becomes parallel to the caustic line and the negative pari-
ty is brought back to the positive unity, whereby a new

classical (Newtonian) path commences at this point.

In Fig. 4 we depict a typical example of the dynamical
tunneling paths. Figure 4(a) shows a trajectory of pattern
IV (cf. Fig. 2), which encounters a caustic at a point
denoted by I in Fig. 4(b). One of the parities is changed
according to the above prescription, whereby a new tun-
neling path is born out. It runs on the tunneling sheet
until the first caustic point F is found, where the parity is
changed to positive unity. It turns out that the classical
path thus obtained is of the pattern II, which is seen in
Fig. 4(c). Note that the final pattern observed after the
tunneling is not determined by the position in
configuration space but by that in phase space.

In order to examine whether the tunneling paths are
chaotic or unstable, we calculate the maximum Liapunov
exponents A, which is defined as

In|u,,, |
At

with u ., being the maximum eigenvalue of the stability
matrix [17]

x=%2 (6=nAt), (19)

algs,pyr)
a(qi:pi)

where g, and g; are the final and initial position vectors,
and p, and p; are the real-valued final and initial quasi-
momentum vectors, respectively. n is the number of
steps and At is a time step suitably chosen for integrating
the equations of motion (10). The present definition of
the Liapunov exponent has been applied both to nonclas-
sical and classical paths. Some examples for the behavior
of u,,, along tunneling path shave been presented in a
previous paper [16].

Figure 5 shows the Liapunov exponents averaged over
the many classical trajectories A (full squares) and those
for the tunneling paths A, (open squares) versus the
total energy. A, have been calculated using about 10
classical trajectories that have been sampled randomly
from the entire energetically accessible region in the
Poincaré section, Fig. 3. About 200 dynamical-tunneling
paths have been generated in total from these 10 classical
trajectories to compute A, Naturally A, becomes
larger as the energy increases. On the other hand, A, .
tends to be smaller in the higher energy region. This is
not surprising, since a tunneling path sees an effective po-

(20)

(B) - 10
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FIG. 4. A typical example of
the tunneling path. (a) An initial
- classical trajectory correspond-
] ing to pattern IV that has a caus-
tic at a point denoted I. (b) A
tunneling path starting from I
] and ending at F where the first
1 caustic is encountered in the
1 tunneling phase space. (c) At
the point F, the classical trajec-

tory resumes.
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FIG. 5. The averaged maximum Liapunov exponents of clas-
sical trajectories A (full squares) and those for the tunneling
paths Ayqna (Open squares) as functions of the energy. Aynn. are
much larger than A at all the energies.

tential that is dominated by 1(x% —y?) around the order-
ing, where y, is the direction to which the negative parity
is assigned after the coordinate rotation to (x,,y;). It is
noticed that A, .. is much larger than A everywhere we
have examined. One thus can anticipate that the tunnel-
ing paths can induce mixing in the tunneling phase space,
which will be investigated in a greater detail in what fol-
lows.

B. Quasimixing property of the tunneling paths

We next study the statistical distribution of the des-
tinations of the tunneling paths. Remember that the tun-
neling path shown in Fig. 4 has moved from a stable re-
gion IV to II. The correspondence of the initial and final
tori is given in a deterministic way by an individual tun-
neling path. However, since a single torus can generate
infinitely many tunneling paths, and since the tunneling
paths are highly chaotic, it is expected that they will des-
tine for many different tori and quasiseparatrices. This is
indeed the case, and we now show the ratio of the transi-
tion from a stable region i to another one j (R;_, ;), where
the suffixes label stable regions and quasiseparatrices as
given in Fig. 3. R;_, . is defined as

1—j
R, =-DWi)_
1—j b

S D(i,))
J

2n

where D (i,j) is a number of the tunneling paths from a
region i to j. Judgment at which stable region or
quasiseparatrix a tunneling path arrives has been made
on a graphical basis by dividing the Poincaré surface of

section in Fig. 3 into 100X 100 segments. Although this
procedure is not the best in assigning a point to the
quasiseparatrices for the obvious reason, it is practically
sufficient for the desired level of accuracy. We have car-
ried out these calculations with the following two
different ways of sampling.

1. Uniform sampling

Choose 250 points uniformly with no biased weighting
factor from the accessible Poincaré surface of section,
Fig. 3, which naturally defines 250 classical trajectories.
Each trajectory is run about 3.5 times as long as the
period of the large scale rotational motion of pattern II in
Fig. 2, during which about 150 caustics are encountered.
About 19 caustics out of these 150 generate the dynami-
cal tunneling, and thus we have about 4800 tunneling
paths in all.

Table I shows R;_,; with the uniform sampling. It is
noticed that extensive transitions among the stable re-
gions and quasiseparatrix have taken place as expected.
If most of the tunneling paths are strongly chaotic as seen
in Fig. 5, one could expect that the population of the final
trajectories (post-tunneling trajectories) to be found in a
stable region would be roughly proportional to its corre-
sponding area in the Poincaré section. To see this, we
define

S D(i, )
AJ=_I— s
> D(i,j)

L

(22)

which is the ratio of the tunneling paths that arrive at a
region j. In Table II are listed 4;, together with S,
which are the relative ratios of the areas of the regions in
the accessible Poincaré section. Apparently, the coin-
cidence of these two quantities is fairly good. In other
words, we have a statistical redistribution of the post-
tunneling trajectories, which is a manifestation of the
principle of equipartition through tunneling. However,
an objection to this conclusion could be made; since the
initial sampling has been made uniformly, the final distri-
butions can be proportional to the areas. However, a
closer look at Table I clearly rejects this possibility. That
is, the diagonal elements, which mean the probability for
a trajectory to remain in the same pattern after the tun-

TABLE 1. The ratio (in %) of the tunneling paths starting
from the ith region to the jth one (R;_,;) using the method of
uniform sampling.

Starting region i

J I II III v v VI

I 28.27 8.38 4.88 0.26 0.82 6.87
I1 58.64 72.46 52.61 51.78 43.93 55.71
II1 1.30 4.95 10.45 11.46 11.19 5.71
v 2.91 4.32 11.15 13.18 17.92 10.57
v 4.36 5.73 14.29 14.62 18.46 15.43
VI 4.52 4.16 6.62 8.70 7.68 5.71
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TABLE II. The ratio (in %) for the tunneling paths to arrive
at the jth region ( 4;), and its relative area (S;) on the Poincaré
section with the uniform sampling.

J 4; S;

I 8.25 10.10
II 60.58 64.29
111 6.79 5.41
v 8.48 7.38
v 10.19 7.38
VI 5.71 5.44

neling, are quite small except for pattern II. Thus, due to
the chaotic tunneling, the post-tunneling trajectories have
lost the memory of which tori from which they came.

Nonetheless, Table II shows some deviation from the
completely statistical distribution. In particular, the de-
viations in the transition from patterns IV and V to I is
considerably large. Besides, despite the symmetrical ar-
rangement of IV and V with respect to I, R, ,; and
R;_,, are not the same. (The deviation from symmetry is
more clearly observed in the pair of R,_,, and R,_,s.)
These results suggest that the number of sampling points
would not be sufficient. However, we ascribe the devia-
tion from the statistical distribution mainly to the short-
life nature of the tunneling paths. As described above, a
path on the tunneling sheet is brought back to the
Newtonian sheet by resetting the negative parity as soon
as the first caustic is encountered. The lifetime of a tun-
neling path is therefore as short as about 27, that is, near-
ly the period for a path to oscillate once in the small scale
motion. Even if a tunneling path is strongly chaotic, the
complete mixing could not be achieved in such a short
run. [Note that the concept of mixing is defined
mathematically as a property that is to be observed in the
limit of the infinitely remote future (or past).]

One of the usual practices to check the mixing is to
choose small region(s) randomly in the entire space, from
which somewhat many sampling points are picked up
and the destinations of the paths are monitored. We con-
tinue to check the property of the mixing based on this
sampling.

TABLE III. The sampling region used to generate the tun-
neling paths in the local sampling. In the last column
0.31<0.35, for example, indicates that
p,=0.31,0.32,0.33,0.34,0.35 are chosen with the same interval
0.01.

Region y Dy
I 0.26,0.27 0.31<0.35
II —0.23,—0.24 0.01+-0.05
0.06,0.07 0.01<0.05
III —0.16 —0.05<0.04
v —0.04,—0.03 0.11+0.15
v —0.04, —0.03 —0.11<+—0.15

VI 0.21,0.22 0.26<0.30

TABLE IV. The ratio (in %) of the tunneling paths starting
from the ith to the jth one (R;_, ;) using the localized sampling.

Starting region i

J I II III Iv A\ VI

I 16.90 2.22 3.98 2.07 2.85 14.66
1I 71.19 83.70 57.52 59.47 55.16 56.55
III 1.66 5.94 11.08 9.47 8.90 4.71
v 2.49 1.48 7.96 12.13 11.74 6.28
A\ 2.49 3.70 11.50 9.46 13.52 13.09

VI 5.27 2.96 7.96 7.40 7.83 4.71

2. Localized sampling

Choose a tiny area on each stable region or
quasiseparatrix (see the black rectangular areas depicted
in Fig. 3), the coordinates of which are shown precisely in
Table III. Pick up 10 points in each area and run classi-
cal trajectories about 5.25 times as long as the period of
the large scale rotational motion, which accumulates
about 225 caustics along each trajectory, from which
about 30 caustics give rise to the dynamical tunneling.
Thus we have prepared about 300 tunneling paths in each
of the five entrance stable regions and one quasisepara-
trix.

Tables IV and V display similar quantities as those in
Tables I and II, respectively. To distinguish them, we
denote the newer quantities as R;_, ; and Zj. Although
the difference between Tables IV and II is rather notice-
able, they can be viewed essentially the same in a qualita-
tive sense. The similarity between Tables II and V is even
more striking. Since the initial sampling zones for 4; are
highly localized in phase space, and since the number of
the sampling points are virtually the same for the every
initial region, the mixing property is now more firmly
concluded.

We present graphical evider ce of the equal distribution
of the destined (post-tunneling) rlassical trajectories. Let
us go back to the tiny rectangular sampling prepared in
the stable region V (cf. column for V in Table IV, and
Fig. 3) as an example. As explained above, there are
about 300 post-tunneling classical trajectories. We have
let each of these trajectories run for a while so that they
make about 60 trace points on the Poincaré section. All
these points are superposed on the same section, which is
shown in Fig. 6. Although one can notice a slight hint of

TABLE V. The ratio (in %) for the tunneling paths to arrive
at the jth region ( 4;), and its relative area (S;) on the Poincaré
section using the localized sampling.

J 4; S;

I 7.21 10.10
11 64.39 64.29
111 6.65 5.41
1A% 7.27 7.38
A\ 8.38 7.38
VI 6.10 5.44
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FIG. 6. The Poincaré section generated by the post-tunneling
classical trajectories, the initial sampling trajectories before the
tunneling of which have been taken from the black squared tiny
area on the region V of Fig. 3. A uniform distribution is ap-
parent.

the presence of the tori, it is clearly observed that the
dotted points cover the accessible area uniformly.

We further add another evidence of the mixing proper-
ty. In the above calculations, the lifetime of each tunnel-
ing path is short, since it is forced to finish as soon as the
first caustic point is encountered. Here we intentionally
let them run on the tunneling sheet until the second caus-
tics are encountered and see what happens, although
these paths cannot make a dominant contribution to the
tunneling probability. It has turned out that almost half
of the tunneling paths have gone out of the basin area.
Using the uniform sampling we have computed the distri-
butions analogous to Ii,-_, j and 4 i which are denoted as
ﬁi_* ; (Table VI) and A4; (Table VII), respectively. These
tables should be compared with Tables I and II, respec-
tively. Table VI has been particularly improved toward

TABLE VI. The ratio (in %) of the tunneling paths starting
from the ith region to the jth one (R, ;) after the second caus-
tic point is encountered in the tunnel phase space using the uni-
form sampling.

Starting region i

J 1 I III v A\ VI
I 9.79 11.49 5.99 9.26 8.20 10.53
II 65.11 51.91 75.58 67.59 69.91 60.90
II1 7.23 7.45 6.91 3.25 3.13 4.89
v 9.79 1.92 3.23 8.33 10.16 13.53
v 0.85 21.91 2.30 6.48 5.08 1.50
VI 7.23 5.32 5.99 3.09 3.52 8.65

TABLE VII. The ratio (in %) for the tunneling paths to ar-
rive at the jth region (4 ;) after the second caustic is encoun-
tered, and its relative area (S;) on the Poincaré section using the
uniform sampling.

A

j a s,
I 9.56 10.10
11 63.13 64.29

III 5.72 541

v 7.17 7.38
A\ 8.49 7.38

VI 5.90 5.44

the completely statistical distribution.

Finally, it is noticed from Tables I, IV, and VI that the
values in column VI (namely, the separatrix as a starting
region) are fairly close to the ratio of the areas S;. Since
any trajectories in the separatrix wander around the
edges of the stable regions, the tunneling paths emanating
from them are distributed in the wide range of the phase

space from the beginning.

IV. CONCLUDING REMARKS

We have shown an important effect of chaos that is
manifested through the dynamical tunneling. That is,
even if a system under study is not chaotic at all in its
classical region, the tunneling phase space may be fully
chaotic, which in turn results in the mixing property and
statistical redistribution of the trajectories after the tun-
neling is over. This effect is not only theoretically in-
teresting, but also could be important in a practical appli-
cation of any semiclassical theory.

In the present paper, however, we have not considered
the tunneling probability at all. This is because we are
not yet fully ready for the calculation of the tunneling
probability on the basis of the uniform semiclassical ap-
proximation [4,7]. Since the quantitative effect of chaos
on a tunneling probability as well as on the functional
form of wave functions is quite an important problem, we
are currently working with this problem.

On the other hand, the statistical redistribution of tra-
jectories after the chaotic tunneling could be important
also in the quasiclassical treatment of the quantum
effects. It is well known in chemical reaction dynamics
that the so-called quasiclassical method is one of the
practical methods [19], in which classical trajectories are
sampled so as to be classified according to the quantized
action integrals that correspond to the quantum numbers.
In particular, when the full quantum theory or even a
semiclassical method is hardly applicable, the quasiclassi-
cal methods should be an inevitable alternative. The
present phenomena and method can be vitally important
in such a case.
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